Contextual Detection of Fmri Activations and Multimodal Aspects of Brain Imaging
نویسنده
چکیده
Functional magnetic resonance imaging (fMRI) is a non-invasive method which can be used to indirectly localize neuronal activations in the human brain. Functional MRI is based on changes in the blood oxygenation level near the activated tissue. In an fMRI experiment, a stimulus is given to a subject or the subject is asked to conduct a physical or cognitive task. During the experiment, a nuclear magnetic resonance signal is measured outside the head, and time series of three-dimensional image volumes are constructed. The object of this thesis is to study the localization of activation regions from the constructed time series as well as multimodal aspects of brain imaging. The localization of activation regions typically consists of the following phases: preprocessing of the four-dimensional spatiotemporal data, computation of a statistic image, and detection of statistically significantly activated regions from the statistic image. The statistic image is a three-dimensional map, which shows the statistical significance of the measured experimental effect at voxel level. The detection and localization of the activated regions can be carried out by segmenting the statistic image into activated and non-activated regions. The segmentation is difficult because the statistic images are often noisy and high specificity requirements are set for the activation localization. In this thesis, a computationally efficient segmentation method has been developed. The method is based on the utilization of contextual information from the 3-D neighborhood of each voxel by using a Markov random field model. The method does not require assumptions about the intensity distribution of the activated voxels. The method has been tested using both simulated and measured fMRI data. The use of contextual information increased the detection rate of weakly activated regions. In the simulation experiments, spatial autocorrelations in the noise term altered overall false-positive rates only little. It was also demonstrated that the developed method preserved spatial resolution better than the commonly used linear spatial filtering. In repeated fMRI experiments, variation in the activated regions obtained by the developed method was about the same as or less than with other widely used methods. In addition to the activation localization, the use of multimodal data, including the comparison of fMRI and magnetoencephalographic (MEG) data, is discussed in this thesis. This thesis also includes multimodal visualization examples created from MEG, single photon emission computed tomography, fMRI and structural magnetic resonance imaging data.
منابع مشابه
Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملDifferent olfactory perception in heroin addicts: an fMRI study
Background: Addiction as a mental disorder has large adverse effects on brain health. It alters brain structure and deteriorates brain functionality. Impairment of brain cognition in drug addiction is illustrated in many previous works; however, olfactory perception in addiction and in particular the neuronal mechanisms of it are rarely studied. Methods: In this experiment, we recruited 20 he...
متن کاملLinking Brain Biology to Intellectual Endowment: A Review on the Associations of Human Intelligence With Neuroimaging Data
Human intelligence has always been a fascinating subject for scientists. Since the inception of Spearman’s general intelligence in the early 1900s, there has been significant progress towards characterizing different aspects of intelligence and its relationship with structural and functional features of the brain. In recent years, the invention of sophisticated brain imaging devices using Diffu...
متن کامل